
Introduction to Programming with Python
Riding the Serpent

Anshul Nigham & Rob Tirrell

April 16, 2011

1 / 1

About Us

Anshul Nigham

Began programming at 12 on on 8086 PC-XT (a full-fledged computer
20x slower than an iPhone).
Converts caffeine into code for a living at Google.

Rob Tirrell

In the second year of a five to six year sentence in the Butte lab
(http://buttelab.stanford.edu/), an entirely ’dry’ lab (computers only –
the only other equipment necessary is a coffee machine).
First language was Python, spends most days writing code in R,
Python, Ruby and C++.

2 / 1

http://buttelab.stanford.edu/

In Case of Emergency, Panic!

But, really, please ask us questions – raise your hand or whatever.
As this is an introductory course, many of you will be wondering about
the same things. Be a leader, just ask and Make Your Voice Heard.

3 / 1

What is Programming? Take 1...

Computer programming or coding is the process of designing,
writing, testing, debugging/troubleshooting, and maintaining the
source code of computer programs. This source code is written in
a programming language. The purpose of programming is to
create a program that exhibits a certain desired behaviour. The
process of writing source code often requires expertise in many
different subjects, including knowledge of the application domain,
specialized algorithms and formal logic.

– Wikipedia

4 / 1

What is programming? Take 1...

Computer programming or coding is the process of designing, writing, testing,
debugging/troubleshooting, and maintaining the source code of computer
programs. This source code is written in a programming language. The purpose of
programming is to create a program that exhibits a certain desired behaviour. The
process of writing source code often requires expertise in many different subjects,
including knowledge of the application domain, specialized algorithms and formal
logic.

True, but useless!!!

5 / 1

What is programming? Take 2...

What did one computer say to the other?

6 / 1

What is programming? Take 2...

What did one computer say to the other?

10011010111000011011010101010110....

7 / 1

What is programming? Take 3...

Programming is. . .

Learning to talk to a computer
Computers only speak binary, but smart people have designed
programming languages that can be converted into binary by using
other programs.
Python is one such programming language. Many others exist, like C,
Java, Ruby, Lisp,

8 / 1

Principal Principles of Programming (1)

Decomposition

Decomposition is the means by which a complex problem or system
is broken down into parts that are easier to understand, program and
maintain.
This is one of the fundamental principles of design and programming:
we decompose the logical structure into smaller, reusable units which
we build one-at-a-time.
Sometimes, how this decomposition should proceed isn’t immediately
clear. Then your first step should be thinking in depth about the
problem you’re facing, and in what ways it can be reduced into
component subproblems.

9 / 1

Principal Principles of Programming (2)

– Wikipedia

10 / 1

Principal Principles of Programming (3)

Divide and Conquer

Imagine you are a pin manufacturer in 18th century England. To
achieve maximum efficiency, you will make pins step-by-step: pounding
the metal into a sheet, cutting the sheet into small strips, heating the
protopins, elongating the pins, punching an eyelet, polishing the pins,
etc..
This is simple enough: just a stepwise series of transformations. More
often, a computer program will be more complex, and have multiple
interdependent parts.

11 / 1

Principal Principles of Programming (4)

Motivating by Example

Think of an application you use frequently (a desktop application, a
website, a phone application, etc.).
What are the application and user operations we would want to
support, and what are their requirements?
With your nearest neighbors, consider and discuss how you would
design this application. Go!

12 / 1

What is Python?

First released in 1991 by a Dutchman named Guido van Rossum
(GvR).
That’s Self-Appointed Benevolent Dictator for Life (SABDFL) van
Rossum to the rest of us.
An interpreted, high-level language with flexible typing.
Currently on its third major release... in other words, it’s been around
the block and has withstood the test of time.

13 / 1

A Satisfied User

Python has been an important part of Google since the beginning,
and remains so as the system grows and evolves. Today dozens
of Google engineers use Python, and we’re looking for more
people with skills in this language.

– Peter Norvig, Director of Search Quality at Google
and Computer Science Superstar

14 / 1

Other Satisfied Users

AstraZeneca uses Python in drug discovery pipelines.
Phillips’ fabrication plants are managed in Python.
Industrial Light & Magic (Star Wars) employs Python for process
management.
Anshul developed an AdWords (Google’s advertising platform)
optimizer in Python.
In Rob’s work, people use Python at every point in the research
pipeline (preprocessing and sanitization, standard analyses, data
aggregation and integration, and so forth).
It may be new to you, but according to TIOBE’s programming
languages index, Python is the sixth-most popular in the world.
A list of anecdotes can’t quite prove a point, so we’ll try to justify why
you should care about and use Python.

15 / 1

Good for Them, What’s in it for You?

Power

Python facilitates rapid development (quickly going from idea to
implementation). It comes with a huge collection of software (libraries)
for many purposes, and external libraries exist for many others.
There is a sizeable, vibrant and very helpful Python
community/ecosystem, should you run into trouble or seek advice.

Clarity

Python is remarkably clear and readable compared to many other
languages.
It actually takes some effort to write difficult-to-understand programs.

16 / 1

The Interpreter (1)

>>>

Python is an interpreted language. The computer reads, understands
(compiles) and executes it on the fly, instead of reading and compiling
ahead of time (as with C, C++, and many others).
Because of this, we can use Python interactively, which is extremely
helpful for designing and troubleshooting code.

IDLE

IDLE is Python’s official graphical interpreter, which we’ll use to walk
through examples throughout the course.
For those of you with Macs, you can open a Terminal and launch a
console interpreter by typing python.

17 / 1

The Interpreter (2)
The print Function

strings are surrounded by single (’) or double (“) quotes, which are
equivalent (but you must use the same type for any particular string).
e.g., if you want a string to have a contraction, you can use double
quotes to surround it, like "The white whale mustn’t breach,
Moby is waiting.".
print is a core Python function, which by default outputs text to the
screen. It’s somewhat special, in that parentheses are optional when
using (calling) it.

A Longstanding Tradition
Three equivalent ’Hello, World!’s:

1 print ’Hello, World!’
2 print "Hello, World!"
3 print("Hello, World!")

18 / 1

The Interpreter (3)

Not Your Daddy’s Desktop Calculator

Among other uses, we can employ Python as a calculator.
At the interpreter (>>>), type 4 + 2. You should see 6. So far, so
good – naturally, other operators are available (e.g. + - * /).

Balling

To delve deeper into Python, we’re going to work through a baseball1

statistics2 example.

1Baseball is a popular American sport. Rob’s hometown is the supposed ’birthplace
of baseball’.

2The deliberate application of statistics to baseball is known as ’sabremetrics’.
Check it out, it’s really interesting.

19 / 1

The Interpreter (4)

Still Balling

The number of bases a player moves as a result of his offense is
calculated as:
singles + 2 * doubles + 3 * triples + 4 * homers

In 1920, Babe Ruth appeared at the plate 458 times, cranking out 73
singles, 36 doubles, 9 triples and 54 home runs.

20 / 1

The Interpreter (5)

More than a Glorified Calculator – Saving it for Later

It can be tedious to have to type out that expression every time. Luckily
for us and our fingers, we can store the results of calculations in
variables very simply in Python.
For example,
bases = 73 + 2 * 36 + 3 * 9 + 4 * 54

If you mess up the numbers, you can always try again. The new value
will replace the old one.
Voilà! Try printing the result.

21 / 1

The Interpreter (6)

Back to the Babe
Another useful statistic is slugging percentage (SP):

1 (singles + 2 * doubles + 3 * triples + 4 * homers) / at_bats

Since we’ve already calculated the numerator — the number of bases
the player moves as a result of his offense — it’s trivial to calculate the
slugging percentage. 3

1 bases = 73 + 2 * 36 + 3 * 9 + 4 * 54
2 sp = bases / 458.0
3 print sp

3The divisor – at bats – needs to be a floating-point number, so enter it as 458.0,
otherwise Python will drop the fractional component of the result. This behavior can be
a pain, and has been changed in Python 3.

22 / 1

Brief Interlude: Setting Up KomodoEdit

KomodoEdit should already be installed on the provided computers, if
not, visit http://www.activestate.com/komodo-edit/downloads to grab it.

23 / 1

http://www.activestate.com/komodo-edit/downloads

Playing Ball with Datatypes (1)

What are They?

A datatype refers to a location in the computer’s memory and the type
of information stored there.
Numbers can be of the int (integer) datatype, like 4, or the float
(floating point) datatype, like 4.0).
Text uses the string datatype, like ’Four score and seven
years ago...’.
True and false values are bool (boolean) datatypes, in Python these
are True and False. There is also a special value called None, that
indicates ’no value’.
We can view the type of any variable using type, so typing
type(’bananagram’) returns <type ’string’>.

24 / 1

Playing Ball with Datatypes (2)

More Advanced Datatypes

Obviously, more complex programs require more complex datatypes
(also referred to as ’data structures’).
The most important in Python are lists and dicts (dictionaries).

1 teams = [
2 ’Montreal Expos’, ’Washington Nationals’,
3 ’San Francisco Giants’, ’New York Yankeees’
4]
5 player = {
6 ’name’: ’Babe Ruth’, ’ab’: 458, ’h’: 172,
7 ’1b’: 73, ’2b’: 36, ’3b’: 9, ’hr’: 54,
8 ’bb’: 150, ’hbp’: 3, ’sf’: 0
9 }

25 / 1

Functions for Fame and Fortune (and Baseball) (1)

Python Provides Many Functions for Free

Functions and methods4 are procedures that work on variables to
transform or otherwise alter them.
Many of Python’s collection datatypes support element access by index
(indexing):
player[’name’] # ’Babe Ruth’

This is an important point: in Python, the first element of a collection is
the [0]th” one, available at collection[0].
Similarly, for lists:
teams[0] # ’Montreal Expos’

4There is a difference: methods are attached to and operate on their objects, while
functions stand alone. Don’t worry too much about this now, we’ll come back to it later
(and in this course we will only write functions, anyway).

26 / 1

Functions for Fame and Fortune (and Baseball) (2)

A Few More Examples

Change a string to all uppercase:
teams[0].upper() # ’MONTREAL EXPOS’

Add an entry to a list:
teams.append(’Krypton Krushers’)

Compute the sum of a list using the builtin sum function:
sum(player[’h’], player[’bb’]) # 322

return the length of a collection:
len(teams) # 4, or 5 counting the Krushers.

27 / 1

Functions for Fame and Fortune (and Baseball) (3)

Writing Your Own with def

The def keyword is used to create new functions.
Functions always return a value. Functions not explicitly returning
a value (have no return statement) implicitly return None.

1 # This function has no parameters and returns None.
2 def test_func():
3 print "I’m useless!"

28 / 1

Functions for Fame and Fortune (and Baseball) (4)

Funcball
If we represent a player as in the dictionary above, we can then write
functions that calculates any player’s stats.5

1 def calculate_bases(player)
2 return player[’h’] + 2 * player[’2b’] + \
3 3 * player[’3b’] + 4 * player[’hr’]
4 def calculate_sp(player):
5 return calculate_bases(player) / float(player[’ab’])

Functions exist to coerce strings like ’1024’ into the corresponding
floating-point or integer numbers (c.f. the int and float functions), or
numbers into the corresponding string (c.f. the str function).
We use the float functions here to account for Python’s division
behavior, as explained earlier.

5The ’\’ just allows us to continue an expression on the next line, so it doesn’t run
off of the slide :).

29 / 1

Loops (1)

Loopball

Suppose we have all of the players in baseball stored in a list (the
elements of the list are dictionaries representing players).
We could calculate their stats one-by-one, but that is just wrong.
Instead, we have the for-loop construct:

1 for player in players:
2 sp = calculate_sp(player)
3 print player[’name’]
4 print ’Slugging percentage: ’ + str(sp)

Then the basic syntax is:

1 for item in collection_of_items:
2 do()
3 stuff = 2 + some + items

30 / 1

Loops (2)

Whileball

Another type of loop is available to us: the while loop:

1 prompt = ’Enter your batting average: ’
2 batting_average = 0
3 while batting_average <= 0.350:
4 # Convert the string from the user into a float.
5 batting_average = float(raw_input(prompt))
6 print ’Your average is >= 0.350.’
7 print ’But you already knew that...’

Then the basic syntax is:

1 while some_condition_is_true:
2 perform()
3 any_number = of_operations

31 / 1

Loops (3)

ABA: Average Batting Average

How about a more useful example:

1 print ’Give me some averages!’
2 print "Enter a negative number when you’re done."
3

4 prompt = ’Enter a batting average: ’
5 batting_average = 1
6 batting_averages = []
7

8 while batting_average > 0:
9 # Convert the string from the user into a float.

10 batting_average = float(raw_input(prompt))
11 batting_averages.append(batting_average)
12

13 print sum(batting_averages) / len(batting_averages)

32 / 1

Rolling Your Own Classes

Custom-Created Classes
We can also write custom classes with the class keyword, with
which we can define datatypes (or data structures) that store arbitrary
data and have a set of methods to manipulate it.6

1 class MyTestClass:
2 def __init__(self, name):
3 self.name = name
4 def say_hello(self, other_name):
5 print self.name + ’ says hi to ’ + other_name
6 my_test_class_instance = MyTestClass(’Rocko’)
7 my_test_class_instance.say_hello(’Clarissa’)
8 # ’Rocko says hi to Clarissa’

The ability to extend the language with our own classes is extremely
useful, but for concerns of time we’ll just dangle the idea in front of you
and leave it that. Any book on Python will have a more thorough
treatment of classes.

6Functions versus methods: say hello is an example of a method, it’s
associated with MyTestClass objects.

33 / 1

Dealing with Uncertainty (1)

Truth Testing

Few programs are just a straight pipeline of unbiased transformations
to data – most of the time, we’ll want to branch out and make decisions
based on input.
Python has if, elif and else keywords that provide this ability.

1 some_boolean = True
2 if some_boolean:
3 print ’Truly today is a special day!’
4 else:
5 print ’Back to the grind, peasant.’

It’s a special day!

34 / 1

Dealing with Uncertainty (2)

Equality

We can also use ==, <, <=, and so on.
The instructions following an elif keyword are only triggered if no
previous conditions are met and the elif condition is.

1 strength = 15
2 if strength >= 15:
3 print ’You pull the sword from the stone.’
4 print ’All hail King Arthur!’
5 elif strength >= 10:
6 print ’Solid effort.’
7 print ’But you were born to work in the mines.’
8 else:
9 print ’Nope! Not even close.’

All hail the king...

35 / 1

if-elif-else

We can also try to imagine this in a more intuitive fashion, as a hierarchical
list of instructions. Then it’s much more clear what the logical flow is.

strength >= 15?
Yes

You’re King Arthur.

No

strength >= 10?
Yes: to the mines.
No: not even close.

36 / 1

Exercise 1

Odd or Even?

The modulus operator % gives you the remainder of a division of two
integers.

1 10 % 3 # The remainder when dividing 10 by 3 is 1.
2 4 % 2 # The remainder when dividing 4 by 2 is 0.

You can get the user to enter an input number as follows:

1 user_number = int(raw_input(’Enter a number: ’))

Write a program that asks the user to input a number, then prints out
if the number is odd or even.

37 / 1

Exercise 2

Am I Overweight?

Get the user to enter his or her height in inches and weight in pounds.
Compute his or her body mass index7 (BMI) as:
703 * weight / h ** 2

Remember to use the float function to convert the user’s strings to
floats.

7BMI’s utility as a measure of health is somewhat limited – it does not necessarily
indicate fitness. For example, due to the mass of their muscles, professional athletes
are often called ’overweight’ by BMI.

38 / 1

Exercise 3

Odd and Even Averages

Get the user to keep entering numbers until he or she enters a 0.
Compute the average of all of the numbers the user entered.
Hint 1: remember the average of batting averages? It’ll look a lot like
that.
Hint 2: use append and while!
Hint 3: use two builtin functions we’ve seen to easily compute the
average, as we did with batting averages:

1 def average(list_of_numbers):
2 # Make sure that the length is calculated as a float to
3 # prevent Python from performing truncating integer division.
4 return sum(list_of_numbers) / float(len(list_of_numbers))

39 / 1

Case Study: The Candy Shoppe (1)

A Profitable Business Proposition

You run a candy shoppe, selling all variety of popsticks, licorice
screamers, fireballs and the like.
Little kids are big business you, and these little sugar fiends are
spending their parents money and are not very sensitive to changes in
price. Being a businessperson first and foremost concerned with the
bottom line, you want to charge anyone less than 14 years old a little
bit extra (25% over regular price).
But you’re not a monster, and if the customer’s blood sugar is below
2.5, you’ll give him or her a 15% discount (with no additional penalty
for being less than 14).
You want this to be done transparently, so you will add a function to
your cash machine that jacks up the price depending on the customer’s
information (which is stored in the customer’s loyalty card).

40 / 1

Case Study: The Candy Shoppe (2)

Customer Information

Each customer’s loyalty card has several attributes encoded in the
magstripe.
These attributes are loaded into the cash machine when you scan the
card, and are available to the software as a dictionary.

1 customer_info = {
2 ’name’: ’GI Jane’,
3 ’email’: ’jane@army.mil’,
4 ’age’: 38,
5 ’blood_sugar’: 5.0 # mmol / L
6 ’likes_dark_chocolate’: True,
7 ’astrological_sign’: ’Gemini’
8 }

41 / 1

Case Study: The Candy Shoppe (3)

Implementation

Recall that we access dictionary values by their key, so for the above
example, customer info[’age’] will return 38.
We can make comparisons with dictionary values directly, without
storing the value in a separate variable:

1 if customer_info[’age’] > 65:
2 print ’Senior citizen discount!’

We want to write a function, that given the purchase price and a
customer’s information, ’adjusts’ the price appropriately. It should
return a number and look something like:

1 def compute_price(base_price, customer_info):
2 pass # Fill in here!

42 / 1

Importing and Using Modules (1)

So far, we’ve only played with the core of Python, so let’s dive into the
standard library (the suite of useful software that comes with Python).
To load any one of these libraries, we use import statements:

1 import random
2 # Generate an integer from 1 to 6 (inclusive).
3 random.randint(1, 6)
4 # Generate an integer from 1 to *5* (exclusive).
5 random.rangrange(1, 6)

43 / 1

Importing and Using Modules (2)

Who’s Feeling Lucky?!

Let’s use random to pick the winner of a lottery. First, define the
players:

1 lottery_players = [
2 ’Rufus’, ’Sun’, ’Tania’,
3 ’Boris’, ’Rocky’, ’Daisy’
4]

Then, picking a winner with random is stupid simple:
print random.choice(lottery_players)

44 / 1

Importing and Using Modules (3)

Another Way

We can also pick a random player by index in the list:
random.randrange(0, len(lottery_players))

There are a few things to note here.
The length of the list is one greater than the last position you can
index to. The last is then:
lottery_players[len(lottery_players) - 1]

Since randrange generates a number exclusive of its second
argument, we can just use the length as the second argument.8

8Actually, we can also omit 0, randrange or randint with one argument are
assumed to start at 0.

45 / 1

Importing and Using Modules (3)

Top Three
For example, we could use this to pick a list of three winners:

1 winners = []
2 while len(winners) < 3:
3 windex = random.randrange(0, len(lottery_players)
4 winners.append(lottery_players[windex])
5 lottery_players.pop(windex)

46 / 1

Three Twitter Trials

We will use a simple library9 to read any public Twitter feed. Download
the smalltweetlib.py file from
https://github.com/rtirrell/PythonIntroduction/raw/master/Source/twitter/smalltweetlib.py.

Create a .py file in the directory you save smalltweetlib.py to,
and import get tweets at the top:
from smalltweetlib import get_tweets

This provides a function get tweets which returns a list of
dictionary objects with text and date attributes.
To get started, try this simple command:
print get_tweets(’cnn’)

You can also run it directly (i.e., python smalltweetlib.py). It will
output tweets from CNN and the NY Times, ordered by date.

9The internals of the file are omitted from discussion today. They’re slightly more
advanced than we can handle. Besides, most of the time, you wouldn’t want to write
that sort of code yourself. Use a library!

47 / 1

https://github.com/rtirrell/PythonIntroduction/raw/master/Source/twitter/smalltweetlib.py

Your First Trial

print a tweet from any user (for example, ’cnn’, or any Twitter user
you choose) in a nice format on screen.
Examine the output from get tweets – it’s a list, so you’ll want to
give a single tweet as the argument to your formatting and printing
function.

1 tweets = get_tweets(’cnn’)
2 tweets[0]
3 # An example tweet dictionary:
4 {
5 ’date’: u’20101113000752’,
6 ’text’: u’robtirrell: @zimmeee sup dawg how was lunch?’
7 }
8 print_formatted_tweet(tweets[0])

48 / 1

Your Second Trial

Display the tweets from a user (for example ’CNN’ or ’NYTimes’) in
that nice format on screen.
Hint: use function you defined above and a loop!

Spoiled:

1 tweets = get_tweets(’THE_REAL_SHAQ’)
2 for tweet in tweets:
3 print_formatted_tweet(tweet)

49 / 1

Your Second Trial

Display the tweets from a user (for example ’CNN’ or ’NYTimes’) in
that nice format on screen.
Hint: use function you defined above and a loop!
Spoiled:

1 tweets = get_tweets(’THE_REAL_SHAQ’)
2 for tweet in tweets:
3 print_formatted_tweet(tweet)

50 / 1

Your Third and Final Trial

Display the tweets from a list of users in a nice format.

1 # A list of tweeps: twitter peeps.
2 tweeps = [
3 ’cnn’,
4 ’nytimes’,
5 ’50cent’, # Vulgarity warning.
6]

Hint: use a loop inside a loop. It’s totally legit.

1 # A list of lists of major airports in NY, CA and IL.
2 state_airports = [
3 [’LAG’, ’JFK’, ’ALB’],
4 [’LAX’, ’SFO’], [’MDW’, ’ORD’]
5]
6 for state in state_airports:
7 for airport in state:
8 print airport

51 / 1

As Simple As...

1 for user in tweeps:
2 tweets = get_tweets(tweep)
3 for tweet in tweets:
4 print_formatted_tweet(tweet)

52 / 1

The Final Project: Mangling Mark Twain

We will code a ’random writer’ that reads a document and generates a
somewhat sensible-sounding babble based on it.
This will be the whirlwind outro: we’ll introduce user input and file
input/output. The result is pretty cool:

By jingo! that reminds me of a droll dog of a thieving line– the high
standard held up to the mode in which her mouth and brow there
was something alien and ill-understood the impetuosity. His reason
for hastening it–if he scrupulous explorer to be saluted with those
cheerful view of all the plans, and took lasting impression of Celia,
Tantripp, stooping and getting a bit of a note saying you don’t see
anything of that sort of challenge me.

– Generated from Middlemarch by Mary Ann Evans

Try as you might, you can’t make your mind understand it. It’s
gramatically close to English, but semantically meaningless
gobbledigook.10

10Kind of like Perl :).
53 / 1

random writer.py

The file is available on the GitHub website.11

It is meant to be run from the command line. Type python
random writer.py, and it’ll ask you to input the name of the file
containing the document to mangle. Middlemarch.txt is available in
the same directory as the code. You can find other books and corpuses
at Project Gutenberg (http://www.gutenberg.org/wiki/Main Page).
The file is reasonably well-commented, and introduces a few advanced
features: list comprehensions and lambdas.

11Reminder:
https://github.com/rtirrell/PythonIntroduction/tree/master/Source/random writer/

54 / 1

http://www.gutenberg.org/wiki/Main_Page
https://github.com/rtirrell/PythonIntroduction/tree/master/Source/random_writer/

So We’ve Sold You on Python, What’s Next? (1)

There are tons of freely-available resources on the internet to continuing
experimenting and learning. Two books that provide particularly good
starting points:

Anshul endorses A Byte of Python
(http://swaroopch.com/notes/Python).
Rob endorses Dive Into Python 3, a slightly more advanced
introduction (http://diveintopython3.org). As the name indicates, it
covers Python 3 (we are using 2.7, some things differ but most of what
we’ve gone over is the same). There’s also a Dive into Python covering
2.4, but that’s getting a bit dated.

55 / 1

http://swaroopch.com/notes/Python
http://diveintopython3.org

So We’ve Sold You on Python, What’s Next? (2)

We haven’t even nearly covered the standard library (the stuff that
comes with every version of Python). Honestly, I haven’t used or even
heard of most of it.
Python has builtin modules for:

Scraping from the internet (HTMLParser).
(Extremely advanced) string searching and manipulation (the strange
world of regular expressions, in the re module).
Creating, deleting and managing files and directories (os and shutil).
Creating and extracting compressed files (gzip, bz2, zipfile,
tarfile).
Interacting with FTP servers (ftplib).
And so on and on → ∞.

56 / 1

So We’ve Sold You on Python, What’s Next? (3)

Stepping away from builtin functionality, there are many other mature
libraries in the wild:

If you want to write websites, check out Google’s App Engine
(http://code.google.com/appengine/). It provides free hosting services
and holds your hand along the way (that’s a good thing!). For more
advanced websites, look into the Django Project
(http://www.djangoproject.com/) (App Engine is actually based on
Django).
There are libraries for image manipulation (the Python Imaging Library,
http://www.pythonware.com/products/pil/), numerical and scientific
calculation (NumPy/SciPy, http://numpy.scipy.org/), bioinformatics
(BioPython, http://biopython.org/wiki/Biopython), plus a whole slew of
others for most every purpose imaginable.

57 / 1

http://code.google.com/appengine/
http://www.djangoproject.com/
http://www.pythonware.com/products/pil
http://numpy.scipy.org/
http://biopython.org/wiki/Biopython

... And a Universe of Other Languages

Image credit: O’Reilly (http://oreilly.com/news/graphics/prog lang poster.pdf)

58 / 1

http://oreilly.com/news/graphics/prog_lang_poster.pdf

Thanks!

We hope this little taste of the joys of programming whetted your
appetite – if so, this is the best place in the world to be.
If you have any questions about Python, programming, or computer
science in general, feel free to email either of us.
Anshul: nigham@gmail.com, Rob: rpt@stanford.edu.
print ’Farewell, and godspeed!’

59 / 1

mailto:nigham@gmail.com
mailto:rpt@stanford.edu

